11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Reliability-based A lowances of Corrosion Losses for Weathering Steel Bridges

Miroslav Sykora | Katerina Kreislova | Jana Markova CTU in Prague, Prague, Czech Republic SVÚOM Ltd., Prague, Czech Republic

Introduction

- Road, railway and several footbridges made of *weathering steel* in Czechia
 - developing protective layer ("patina")
- No protective coating, low maintenance costs and 100% recyclability

Weathering steel – *ideal choice*? For all conditions?

Introduction

Development of patina in changing *conditions*? Wrong *details*?

- *Monitoring* of patina development key for predicting service life
 statistical analysis of *measurements* in literature along with new measurements
- → generic probabilistic models verified for current conditions
 ✓ probabilistic reliability analysis of representative cross-sections
 → <u>reliability-based allowances</u> for a range of situations (<u>uniform corrosion</u>)

Sykora et al. - Reliability-based Allowances of Corrosion Losses for Weathering Steel Bridge

International database

• C2 through C5 corrosivity categories

ISO 9223

Value

 $C1 \le 1.3 \text{ um/year}$ C2 <= 12.5 um/year C2.5 <= 25 um/year C3 <= 32.5 um/year C3.5 <= 50 um/year $C4 \le 65 \text{ um/year}$ C4.5 <= 80 um/year C5 <= 140 um/year C5.5 <= 200 um/year CX (everything else)

EUROPE

 C4 exceptionally for unvented locations with increased chloride concentrations

Probat	bilis ¹	tic mode	OSS	EN A, C2 EN A, C3					
	$D = \theta r_{\rm corr} t_{\rm exp}^{\ b}$						0.01 carbon D(75% D(75%)	carbon steel, C3 D(75%) D(75%)	
$Mode uncertai \theta \approx D_{rea} D_{mode}$	l inty 1	<i>Initial</i> <i>corrosion ra</i> (atmospheri corrosivity)	<i>te</i> c c c c c c c c c c c c c c c c c c c	onent ependent viour) rial and osivity	CODTEN		0.005 0.00	00 1000	
						$\frac{N A (Ca}{C}$	arbon steel)		
Corrosivity category	Mode	<i>I</i> odel uncertainty θ Corrosion rate r_{corr}			Exponent <i>b</i>				
	μ	V	μ (μm/year)	V	μ	V	• But adequate design of		
C2	1	10 % (<i>12.5 %</i>)	20	27.5 %	0.32 (0.56)	25 %	details (horizontal surface leakages) is needed	es,	
C3	1	10 % (<i>12.5 %</i>)	35	15 %	0.32 (0.56)	35 %			

REF Sykora et al. Probabilistic Analysis of Corrosion Rates and Degradation of Weathering Steel Bridges. *EUROSTRUCT 2023*

Reliability analysis

- IPE 100
 - secondary
 load-bearing
 members,
 members
 in truss structures
- IPE 500
- welded I-870
 - main bridge girders, secondary members of larger bridges

Time of exposure [year]

C2

- Allowance conservative for all sections
- For IPE500 and I870, effect of corrosion on reliability is small
 → 'no allowance' strategy?
 For IPE100, ⊿_d << 0.8

mm is sufficient

Reliability-based allowances (in mm)

Corr. Cat.		C2			C3	
Reference period	100y		50y	100y		50y
Target relia- bility β	4.3	3.8		4.3	3.8	
IPE100	0.35	0.3	0.2	1.85	1.35	0.6
IPE500	0.2	0.2	0.15	0.65	0.55	0.35
1870	0.2	0.2	0.15	0.55	0.50	0.3

- averaged over three failure modes
- grey values unlikely to have small key beams in CC3

Discussion

- For C3+ categories scattered measurements in database
 - → *new measurements* suggest large potential for improvements
- Corrosion rates depend on orientation of surface *within-section variability* contribute to observed scatter
 - doubled corrosion losses observed for upper surfaces of lower flanges of I-sections
 - unfavourable E- and N-orientation
 - if separated, significant reduction in overall variability may be reached
- For existing bridges, changes in exposure since their execution to be considered
 - in general corrosivity reducing in Europe since 1990s
 - new US guidelines do not consider industrial pollution in design

Conclusions

- In C3 *design allowance* could be about 0.5-0.6 mm.
 - For C2 exposure, a "no allowance" strategy might be considered.
 - Allowances in ECCS guideline seem to be generally conservative.
- Exposure conditions need to be critically considered in *design* and carefully controlled during *operation* to utilize potential of material.
- Poorly developing patina:
 - identification visually in early phases?
 - non-destructive tests (Electrochemical Impedance Spectroscopy)?
- For *sustainability in construction*, important is to support decisions regarding use of weathering or carbon steels :
 - for various types of bridges in different environments
 - considering economic, societal, and ecological aspects including predicted climate changes

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Thank you for your attention. miroslav.sykora@cvut.cz