S T E E L B R I 💭 G E S

PRAGUE 2024

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

Encho Dulevski | Vasil Nikolov | Alexander Jiponov

Presenting: Vasil Nikolov

Prague 2024.09

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

Effective width of wide flange steel girder according to EN

κ	Verification	β – value		
$\kappa \leq 0,02$		$\beta = 1,0$		
$0,02 < \kappa \le 0,70$	sagging bending	$\beta = \beta_1 = \frac{1}{1+6,4\kappa^2}$		
	hogging bending	$\beta = \beta_2 = \frac{1}{1 + 6.0 \left(\kappa - \frac{1}{2500 \kappa}\right) + 1.6 \kappa^2}$		
> 0,70	sagging bending	$\beta = \beta_1 = \frac{1}{5.9 \kappa}$		
	hogging bending	$\beta = \beta_2 = \frac{1}{8,6 \kappa}$		
all ĸ	end support	$\beta_0 = (0,55 + 0,025 / \kappa) \beta_1$, but $\beta_0 < \beta_1$		
all ĸ	Cantilever	antilever $\beta = \beta_2$ at support and at the end		
$\kappa = \alpha_0 b_0 / L_e$ w in which A_{sl} is	with $\alpha_0 = \sqrt{1 + \frac{A_{s\ell}}{b_0 t}}$ the area of all longitude defined in Figure 3.1 and	dinal stiffeners within the width b_0 and other		

Table 3.1: Effective^s width factor β

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

Analytical models for shear lag evaluation

Presenting: Vasil Nikolov

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

Recalculated parameters of shear lag

struct. part	k	0.1	22	2	12
	case	β	<i>a</i> ₁	<i>a</i> ₂	<i>a</i> ₃
deck plate	a	0.9442	5.9097	0.2108	2.022
	b	0.8684	10.523	0.2033	2.669
	<i>c</i> ₁	0.9107	9.8026	0.2060	2.587
0	<i>C</i> ₂	0.9108	9.7975	2.061	2.586
cantilever	a	0.9382	6.5852	0.2167	1.708
plate	b	0.9343	7.0332	-0.019	
	С	0.9454	5.7738	0.0321	
bottom plate	a	0.9485	5.4300	0.2100	2.021
	b	0.8552	16.930	0.1895	3.428
	<i>c</i> ₁	0.8722	14.647	0.1924	3.361
EC3		0.9398	6.4	0.2	4.0

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

"Au" approach in deck plate between girders

Effective breadth ratio β_i .

Presenting: Vasil Nikolov

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

"Au" approach in deck plate between girders

c)

Presenting: Vasil Nikolov

Prague 2024.09

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

"Au" approach in cantilever deck parts

stresses for a cantilever deck plate

b) at the deck plate

stress diagrams along the transverse elements c) at bottom plate d) at deck plate

Distribution of transversal stresses along web axis of girder due to bending

Diagram of transverse direct stresses along the longitudinal edge of model 2

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

"Au" approach for unequally loaded girders

Presenting: Vasil Nikolov

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

Conclusion

STEEL BRIQGES

PRAGUE 2024

Thank you for your attention

Prof. Dr. eng. Encho Dulevski Dr. eng. Vasil Nikolov Dr. eng. Alexander Jiponov

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES 2024

Investigations On the Effective Width of Wide Flange Steel Girders

References

- 1. Dulevski E.; Effective width of Steel Plate Desk Bridges with Closed Stiffeners. Stahlbau 7 (1989), p.p 217-221.
- 2. Pr EN 1993 -1-5; 2022(E). Eurocode 3: Design of steel structures Part 1-5: Plated structural elements.
- 3. CEN. Eurocode 3: Design of steel structures Part 1-5: Plated structural elements. EN1993-1-5. 2006.
- 4. E Dulevski E.; Global structural analysis of steel box girder bridges. Techn. Univ. of Denmark. Serie R, No 283. 1992.
- 5. Dulevski E.; Global structural analysis of steel box girder bridges for various loads. Techn. Univ. of Denmark. Serie R, No 309. 1994.
- Dowling P. J. The behavior orthotropic steel deck bridges; in: Development in bridge design and construction. Crosby Lockwood & Son LTD. London. 1971.
- 7. Hambly E. C., Bridge deck behavior. E & FN SPON, London, New York, Tokyo, Melbourne, Madras. 1991.
- 8. Kristec V., Studnicka J., Negative shear lag in flanges of plated structures. J. Struct. Engrg. ASCE 117, 12/1991.
- 9. Shushkewicz K. W., Negative shear lag explained. J. Struct. Engrg. ASCE 117, 11/1991.
- 10. Deutsche Bahn. Vorschrift für Eisenbahnbrücken und sonstige Ingenieurbauwerke (VEI). DS804(B5) Jan.97.
- 11. Malcolm D. J., Redwood R. G., Shear lag in stiffened box girders. Journ. of the struct. div. ASCE, ST7, July 1970.
- 12. Sedlacek G., Simplified method for the determination of the effective width due to shear lag effects. J. Construct. Steel Research 24. 1993
- 13. Tate M. B., Shear lag in tension panels and box beams. Eng. Report N3, Iowa Eng. Exp. Station, Iowa State Univ., Anes, Iowa 1950-51
- 14. William K. J., Scordelis A. C., Analysis of Eccentrically stiffened folded plates. Int. Assoc. for Shell Struct. Symposium of Folded Plates. Vienna. Sept. 1970
- 15. William K. J., Scordelis A. C., Analysis of orthotropic folded plates with eccentric stiffeners. Univ. of California, Berceley. Struct. Engrg. And Struct. Mech., Report N SESM 7-2, Feb. 1970