STEEL BRIOGES PRAGUE 2024

Remaining Fatigue Strength of an Orthotropic Steel Deck with Respect to a Repair Method by Cold Joining Techniques F. Kalkowsky | M. Schröder | C. Blunk | R. Glienke | J. Alex | W. Flügge

Outline

Introduction

Damages on Orthotropic Steel Deck Structure

|||| ||||| **Experimental Investigations**

Summary

503

IGP

- Significant increase in size and weight of freight transport performance per vehicle
- Significant increase in freight transport performance
- Overuse of infrastructure that was not taken into account in the planning phase

Damages on Orthotropic Steel Deck Structure

Damages on Orthotropic Steel Deck Structure

Damage Categories	Damage category	Detail and Damage Tolerance
5 5	Category 1	Cover plate of deck slab
		Redundancy available
		Multiple load paths exist
	Category 2	Connections between crossbeam and discontinuous longitudinal girder or splice between continuous longitudinal
category i		girder
deck plate		Category 2a
		Fatigue failure of splice between longitudinal girder
longitudinal		Eatique failure of discontinuous longitudinal girder to crossbeam joint
entegory 2		Category 2c
catagory 3		 Fatigue failure of crossbeam at free edge of extended cut-out
cross	Category 3	Components and connections in the crossbeam
		Redundancy available to a limited extent
		Secondary damages very likely
		Component failure possible
main girder		Multiple load paths available to a limited extent
	Catagoria	Local collapse of the structure
	Category 4	Main structure and girder.
category 4		No recordary damages likely
		 Single load paths
		 Global collapse of the structure
[8]		

Damages on Orthotropic Steel Deck Structure **Repair Methods**

IGP

INROS LACKNER

Damages on Orthotropic Steel Deck Structure Repair Methods – Cold joining technology

- Ø-range from 6.4 mm 19.5 mm
- No thermal load shrinkage stress

- Cold joining technology
- No special preparation of the joint
- Easy installation of the blind fastener
- Only one-side accessibility is required

Application of blind fastener

- ! Missing design rules acc. to Eurocode 3
- Application by individual case studies
- National Technical Approval | General Construction Technique Permit | European Technical Assessment
- Close gap of knowledge by systematic investigations

7

Experimental Investigations Static tests on blind fasteners

Test procedure:

- DIN EN ISO 14589
- Hardened Inserts
- Test velocity 10 mm/min

Shear test parameter:

- Position shear plane
- Min. | max. clamping length
- Min. | max. hole diameter
- ➤ Characteristic shear resistance F_{v,Rk}

Tension test parameter:

- Min. | max. clamping length
- Max. hole diameter
- Characteristic tension resistance F_{t,Rk}

Shear Test

h es		parameter l	paran	d _{0,min}	d _{0,max}			
	ا _د [mm]	t _l < t _{ll} [mm]	t _l >t _{ll} [mm]	[mm]				
01	6.4	4.0 - 18.2	2.0 + 5.1	5.1 + 2.0	7.1	7.4		
02	7.8	4.8 - 27.0	2.5 + 8.6	8.6 + 2.5	8.9	9.3		
03	9.5	8.0 - 30.1	3.0 + 24.0	24.0 + 3.0	10.5	11.0		
04	12.7	9.6 - 41.2	4.0 + 34.2	34.2 + 4.0	13.9	14.7		
05	15.9	12.8 – 21.6	5.0 + 20.6	20.6 + 5.0	17.5	18.4		
06	19.1	12.8 – 31.6	6.0 + 19.6	19.6 + 6.0	21.1	22.1		
¹⁾ Configuration for tension tests								

Experimental Investigations **Static tests on blind fasteners**

Results:

- Design equation for the characteristic shear $F_{v,Rk}$ and tension resistance $F_{t,Rk}$
- Statistical evaluation acc. to EN 1990 Annex D
 - Comparison of experimental and theoretical results
 - Partial factor $\gamma_{\rm M}$ below $\gamma_{\rm M2}$ = 1.25 (resistance of fasteners)

Experimental Investigations Fatigue tests on blind fasteners

Test procedure:

- Load level method
- Load ratio R = 0.1
- Test frequency f = 41 89 Hz
- End of test run-out ($N_D = 5.10^6$) or fracture of specimen
- Evaluation acc. to BACKGROUND
 INFORMATION OF FATIGUE DESIGN RULES

Results:

- Characteristic shear stress range $\Delta \tau_{\rm C} = 198 \text{ N/mm}^2 \text{ (m=5)}$
- Characteristic direct stress range $\Delta \sigma_{\rm C} = 77 \text{ N/mm}^2 \text{ (m=3)}$

88

800

700

500

 $\Delta \tau \left[MPa \right]$

Shear stress range

50

 10^{4}

Experimental Investigations Old steel from demolished bridge structure

- **Repairing in main girder** area with additional plates
- Webs of the main girder subjected to tensile stresses from welding
- Old material failed by lamellar tearing → Manganese sulphides in the material was found as reason
- Iack of stability of the old bridge and problems with the repair method <u>Demolished steel bridge</u>:
- Provision of test material from middle section for fatigue tests

- Load level method
- Load ratio R = -1 (BM) | 0.1 (PB)
- Test frequency f = 8 20 Hz (BM) | 93 93 Hz (PB)
- End of test run-out $[N_D = 2.10^6 (BM) | N_D = 5.10^6 (PB)]$ or fracture of specimen
- Evaluation acc. to BACKGROUND INFORMATION OF FATIGUE DESIGN RULES

- Comparable fatigue resistance of perforated bars
- Surface condition dominates the fatigue resistance of base material
- Notch effect dominates the fatigue resistance of perforated bars
- No pre-damage to the base material due to the service lifetime
- Repair solution with cold joining technology is like a new joint

Execution Repair Method **Cold Joining Technology**

Hasselholmer Talbrücke:

- Base material missing Z-grade lamellar tearing
- Bad execution of welded joints
 - Bad weld preparation
 - Great weld seam volume
- Localisation of the damage in the structure not only in position of the main lanes

EROSPACI

INROS LACKNER

IGP

Execution Repair Method

- Removal of coating and application of brittle lacquer
- Adapted bracket
- Hole manufacturing with magnetic drilling machine
- Provisional bolting of the bracket by 8 mm bolts with the crossbeam
- Alignment of the bracket for full contact between bracket and crossbeam as well as longitudinal stiffener
- Manufacturing of the holes in the longitudinal girder by reaming from 9.5 mm to 10.5 mm in the bracket and drilled through the girder
- Installation process of BOM-R12-8 from inside to outside alternately
- Same procedure for connection between crossbeam and bracket with fit bolts according to EN 14399-8, strength grade 10.9, galvanised and bring to snug-tight condition
- Application of corrosion protection

- Problem of repairing method by welding old steel lamellar tearing
- Strengthening method by cold joining technology shows advantages for category 2 damages
- Special blind fasteners have high static load-bearing capacity and fatigue resistance
- Determined characteristic values for a Eurocode 3 compliant design
- Old steel showed comparable fatigue resistance no damage from load history
- Application example of cold joining repair method shows no new damages since 2020
- Thesis:

15

- Cold joining technology for category 2 damages preferred repair method
- > Wide use should also be recommended in other areas of application

© Inros Lackner SE

Many thanks for your attention!

Contact

M.Sc. Florian Kalkowsky **Mechanical Joining Technology** Phone +49 381 496 -141 Fax +49 381 496 -12 florian.kalkowsky@igp.fraunhofer.de

Fraunhofer IGP Albert-Einstein-Str. 30 18059 Rostock www.igp.fraunhofer.de

FRAUNHOFERICP

Instagram

YouTube

Xing

References

[1] Richtlinie zur Nachrechnung von Straßenbrücken im Bestand (Große Entfernung) - Bundesministerium für Verkehr, Bau und Stadtentwicklung
 [2] Federal Ministry for Digital and Transport

[3] Charisius: Köhlbrandbrücke Hamburg. url: https://fink.hamburg/wp/wp - content / uploads / 2019 / 05 / Br % C3 % BCckenbau - Finkenwerder .jpg
 [4] Paschen et al. - Instandsetzungs- und Sicherungsmaßnahmen bei den Rheinbrücken Leverkusen und Duisburg- Neuenkamp – ein Zwischenbericht (Teil 1) (Stahlbau 86 2017, Heft 7)

[5] de Jong – Renovation techniques for fatigue cracked orthotropic steel bridge decks

[6] Bucak - Reparatur durch Stegaufpflasterung

[7] Ungermann et al. - Instandsetzung und Verstärkung von Stahlbrücken mit Kategorie-3-Schäden

[8] Merkblatt DVS 1709:2022-11 - Instandsetzung und Verstärkung von geschweißten Stahlbrücken

[9] Kuhlmann et al. - Instandsetzung und Verstärkung von Stahlbrücken mit Kategorie-2-Schäden

[10] Scharff et al. - Strategien zum Verlängern der Gesamtlebensdauer von orthotropen Fahrbahnplatten aus Sicht der Anwendungspraxis

[11] Friedrich et al. 2017: Stahlbrücken – Bestandsanalyse Erhaltung und Erweiterung

[12] https://www.youtube.com/watch?v=F7kF0EVc2WA

[13] https://www.deges.de/projekte/projekt/a-19-ersatzneubau-petersdorfer-bruecke-inklusiveas-waren/ Bildnachweis: Energieministerium Mecklenburg-Vorpommern

[14] - https://planen-bauen40.de/project/petersdorfer-bruecke/

[15] Schröder - Experimentelle und numerische Untersuchungen zur Ermittlung der Schwingfestigkeit an bauteilähnlichen Proben aus Altstahl mit Vorbelastung (Master-Thesis), Wismar: Hochschule Wismar, Fak. Für Ingenieurwissenschaften

