

Material selection for railroad bridge bearings to avoid brittle fracture

- Steel Bridges Symposium Prague 2024 -

Sep 13th, 2024

M.Eng. Natalie Hoyer

2

STEEL BRIQGES PRAGUE 2024

Obvious need of a sufficient brittle fracture design

Identification of standard bearing components

STEEL BRIQGES PRAGUE 2024

Influence parameters of brittle fracture

influence parameters		brittle fracture-promoting parameters
stress	loading conditions	 low temperatures sudden loading multiaxial stress state
	environmental conditions	 stress corrosion cracking liquid metal embrittlement hydrogen embrittlement
construction	design	 notches sudden changes in cross-section thick-walled components
material	manufactoring technology	 surface defects and cracks due to welding hardening grinding
	material structure and microstructure	 cubic body-centered and hexagonal crystal lattice coarse-grained impurities non-metallic inclusions

STEEL BRIOGES PRAGUE 2024

High risk for brittle failure

Typical bearing details and assumption for possible crack initiation

STEEL BRIOGES PRAGUE 2024

Verification of selected standard details

STEEL BRIQGES PRAGUE 2024

Experimental investigations - full scale tests

DB Netz AG ZENTRALE

Allgemeingü Als Handlungsam	iltige Technische Mitteilung weisung gemäß Konzemrichtinie 138.0202 -
TM	2012-048 I.NVT 4
achlich zugehörige Ril:	804
irsatz für TM :	
interlegt in der Datenbank: echn. Mittellungen DB Netz	Server BLN5LR4012/DB AG/DE Datemarre: ba412aldiskussionijitechnnitedbretz.ns/

Thank you for your kind attention + Many thanks to DZSF for funding and to partners for cooperation

Deutsches Zentrum für Schienenverkehrsforschung beim

Eisenbahn-Bundesamt

Ingenieurbüro Dr.-Ing. Markus Porsch