

Diagnostics of prestressed ropes after multiannual operation – SNP Bridge, Bratislava, Slovakia

Tomáš Koščo, Matúš Margetin, Vladimír

Chmelko

11th INTERNATIONAL SYMPOSIUM ON STEEL BRIDGES

11. - 13. September 2024

E STU

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

STEEL BRIQGES PRAGUE 2024

CONTENT

- SNP Bridge in Bratislava, Slovakia
- Analysis of the material
- Cable tension estimation
- Rope tension estimation
- FEM Simulation of a rope
- Summary

:::: S T U

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

SNP BRIDGE BRATISLAVA, SLOVAKIA

ROPE CROSS-SECTION

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

CHEMICAL COMPOSITION - SPECTROMETRY

BELEC Compact Port HLC MASS SPECTROMETER

ANALYSED SURFACE

CHEMICAL	C (%)	Si (%)	Mn (%)	Cu (%)	Cr (%)	Mo (%)	Ni (%)
ELEMENT	0.848	0.269	0.520	0.178	0.570	0.105	0.115
CHEMICAL	V (%)	Ti (%)	Co (%)	W (%)	Nb (%)	AI (%)	P, S(%)
ELEMENT	0.045	0.070	0.101	0.12	0.047	0.057	0.05

CHEMICAL COMPOSITION OF THE ROPE

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

:::: S T U

ANALYSIS OF THE MATERIAL

MAGNIFIED 500x

 Ctr:
 7200XI00

MAGNIFIED 1000x

KEYENCE VHX 6000 MICROSCOPE

MICROSTRUCTURE OF THE ROPE

SORBITIC STRUCTURE WITH NO INVESTIGATED DEGRADATION (SEGREGATION), PATENTED STEEL WITH ESTIMATED STRENGTH ABOUT 1370 MPa

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

ST U

TENSION ESTIMATION by VIBRATION METHOD

MODAL SHAKER on the CABLE 6

PSD 15 MINUTE MEASUREMENT

FREQUENCY vs MODE NUMBER

:::: S T U

TENSION ESTIMATION by VIBRATION METHOD

$$m\frac{\partial^2 y(x,t)}{\partial t^2} + EI\frac{\partial^4 y(x,t)}{\partial x^4} - T\frac{\partial^2 y(x,t)}{\partial x^2} = 0$$

STRING THEORY

EULER-BERNOULI BEAM THEORY

FANG-WANG - PRACTICAL FORMULA

$$T = 4mL^2 \left(\frac{f_n}{n}\right)^2$$

- NEGLECTS BENDING STIFFNESS
- HINGED ENDS

$$T = 4mL^2 \left(\frac{f_n}{n}\right)^2 - \frac{EI}{L^2} (n\pi)^2$$

- INCLUDES BENDING STIFFNESS
- BENDING STIFFNESS IS
 UNKNOWN
- ASSUMES HINGED ENDS

 $T = 4\pi^2 m L^2 \frac{f_n^2}{\gamma_n^2} - \frac{EI}{L^2} \gamma_n^2$

- INCLUDES BENDING STIFFNESS
- BENDING STIFFNESS IS UNKNOWN
- FIXED ENDS
- [FANG, 2012]

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

💠 S T U

ESTIMATION OF BENDING STIFFNESS

$$f_n = \sqrt{\frac{\pi^2 EI}{4\rho AL^4}} n^4 + \frac{T}{4\rho AL^2} n^2$$

$$\min F(EI,T) = \sum_{n} \left\{ \left(\frac{\pi^2 EI}{4\rho A L^4} n^4 + \frac{T}{4\rho A L^2} n^2 \right) - (f_n^m)^2 \right\}^2$$

HIGHER ORDER VIBRATION METHOD [YAMAGIWA, 2000]

CABLE MEASUREMENTS

Cable	String Theory [MN]	Beam theory (hinged	Fang (fixed ends)			
			[iaiia]			
1	8.904	8.904 9.0050				
2	9.290	9.290 9.0827				
3 R	16.127	15.8365	14.650			
3 L	16.477	16.3023	15.014			
4 R	22.201	22.3574	20.658			
4 L	22.579	22.3574	20.868			
5 L	25.342	24.8416	21.562			
6 R	21.632	21.6588	20.222			
6 L	21.632	21.6588	20.222			

ESTIMATED TENSION FORCES

TECHNOLOGY IN BRATISLAVA

ROPE MEASUREMENTS

ANCHORING CHAMBER

ACCELEROMETERS on ROPES

TECHNOLOGY IN BRATISLAVA

ROPE MEASUREMENTS - TENSION DISTRIBUTION

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA Tomáš Koščo: Diagnostics of prestressed ropes after multiannual operation

 $\times 10^5$

ROPE MEASUREMENTS - TENSION DISTRIBUTION

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

CABLE vs ROPE MEASUREMENTS

Cable	String Theory (MN)	Beam Theory (hinged ends) (MN)	Fang-Wang (MN)	Sum of ropes (MN) min/max
1	8.904	9.0050	8.1636	8.432 / 8.881
2	9.290	9.0827	8.1802	8.035 / 9.269
3 R	16.127	15.8365	14.650	14.701 / 15.452
3 L	16.477	16.3023	15.014	15.401 / 16.190
4 R	22.201	22.3574	20.658	18.389 / 20.684
4 L	22.579	22.3574	20.868	18.164 / 20.435
5 L	25.342	24.8416	21.562	23.010 / 24.076
6 R	21.632	21.6588	20.222	21.591 / 23.442
6 L	21.632	<u>×</u> 21.6588	20.222	21.616 / 23.471

Koščo, T., Margetin, M., Chmelko, V., Sulko, M., Bridge cable tension estimation using the vibration method, Structures, 2024

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FEM SIMULATION - TENSION

ROPE CROSS-SECTION

:::: S T U

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

STRESS DISTRIBUTION in the CROSS-SECTION HIGHEST STRESS is **8% HIGHER** THAN the AVERAGE STRESS

FEM SIMULATION – BENDING / CORROSION

C: u =0.1mm korozia

Equivalent Stress 12

12/12/2022 13:01

598.14 Max 100 91,429 82,857 74.286 65.714 57.143 48.571 40

1.4173 Min

Unit MPa Time: 1

BENDING IN HINGES (542.5 MPa)

CORROSION OF INTERNAL WIRES (8% CROSS SECTION REDUCTION) **17% STRESS INCREASE**

:::: S T U

SUMMARY

- Material strength of around 1370 MPa was estimated.
- Cable and rope tension has been estimated using vibration method, AVERAGE STRESS 330 MPa (24% of strength).
- FEM analysis of tensile loading of the rope was performed, highest stress is 8% higher than the average stress
- FEM analysis of bending, 542.5 MPa (40% of strength)
- FEM analysis of corrosion

🗄 ST U

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

THANK YOU FOR YOUR ATTENTION

Tomáš Koščo, Matúš Margetin, Vladimír Chmelko

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA STEEL BRIQGES PRAGUE 2024